
Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-6, October 2024

19

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024

DOI: 10.54105/ijainn.F1092.04061024
Journal Website: www.ijainn.latticescipub.com

Algorithms and Data Structures for Numerical

Computations with Automatic Precision Estimation

Igor V. Netay

Abstract: We introduce data structures and algorithms to

count numerical inaccuracies arising from usage of floating

numbers described in IEEE 754. Here we describe how to

estimate precision for some collection of functions most

commonly used for array manipulations and training of neural

networks. For highly optimized functions like matrix

multiplication, we provide a fast estimation of precision and some

hint how the estimation can be strengthened.

Keywords: Digital Noise; Floating Point Numbers, Neural

Networks, Numerical Analysis.

I. INTRODUCTION

Numerical calculations with floating point numbers

almost always are inexact. The simplest known example is

 0.1 + 0.2 ! = 0.3,

which holds for almost all programming languages. This

example illustrates the consequences of non-exact

conversion from decimal number literals to binary float

number representation. At the same time, computations with

floating point binary numbers are themselves inexact.

Another well-known example shows that the values of

roots of quadratic equation depend on way the solution was

computed. Consider equation:

𝑥2 + 1000𝑥 − 2 ∙ 10−11 = 0. (1)

If we find the roots as
−𝑏±√𝐷

2𝑎
for 𝐷 = 𝑏2 − 4𝑎𝑐 for 𝑎𝑥2 +

𝑏𝑥 + 𝑐 = 0 , then for Eq.(1) we get one root 𝑥 = −1000

with 53 exact bits (maximal number for 64-bit float) and

other root ≈ 5.7 ∙ 10−14 without any exact bits. If we will

compute the roots in other way:

𝑥1 =
−𝑏−𝑠𝑔𝑛(𝑏)√𝐷

2𝑎
 . (2)

𝑥2 =
𝑐

𝑎∙𝑥1
, (3)

Then we get 𝑥1 = −1000 and 𝑥2 = 2 ∙ 10−14 with all 53

bits exact for both roots.

The example above shows that accuracy of the result

depends on way of computation frequently. Actually,

usually one cannot easily guess a proper way to get

maximally exact results. Moreover, one cannot get exact

results for any arithmetic operation. Subtraction of numbers

that are close to each other is the worst possible case.

Manuscript received on 07 October 2024 | Revised Manuscript

received on 11 October 2024 | Manuscript Accepted on 15

October 2024 | Manuscript published on 30 October 2024.
*Correspondence Author(s)

Igor V. Netay*, JSRPC Kryptonite and Institute for Information
Transmission Problems of Russian Academy of Sciences, Moscow, Russia.

Email: i.netay@kryptonite.ru, ORCID ID: 0000-0002-0644-6148.

© The Authors. Published by Lattice Science Publication (LSP). This is

an open access article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

During this operation accuracy of the result drops

drastically and there is no way to avoid it. Two

mathematically equivalent ways to compute the same

expression can lead to different numerical results, and it

may be unclear which one is closer to correct mathematical

value. This fact was the motivation for us to implement

means to estimate loss of precision during computations and

to track exact mantissa bits in the results. Also, this helps

one to avoid wrong conclusions based upon possible

interpretations of numerical noise as meaningful data.

Calculations with huge arrays of numbers and arithmetic

operations involved like training of neural networks usually

lead to high accumulated digital noise in the result

(see [5][8][9][10]). Actually, even simpler numerical

computations can lead to inexact (and unreliable) results

frequently. For instance, among such computations are

inversion of ill-conditioned matrices and solutions of ill-

conditioned systems of linear equations.

We do not provide new ways to invert matrix or to solve

linear systems or to perform any other computations.

Instead, we enhanced standard library algorithms with

additional digital error computation and its tracking that will

automagically indicate whether the result is reliable or it

should be discarded and more precise algorithms (or

different computational approaches) are needed.

Usual goal of numerical analysis problem is to design

algorithms to construct maximally or enough precise

approximations of mathematical objects. Now for many

applied problems numerical precision is ignored, and

computations are constructed from some standard functions

provided by well-known libraries. Here we propose the

answer for the problem of inaccuracy estimation for a given

model and algorithm. For practical potentially unreliable

algorithm calculation of precision should be performed and

may lead to searching for some more reliable algorithms.

II. NUMERICAL PRELIMINARIES

A. Errors

Suppose we calculate an approximation 𝑥
^
 of real value 𝑥.

Absolute error is defined as |𝛥𝑥| = |𝑥
^

− 𝑥|.

Relative error is defined as 𝛿 such that
𝑥
^

𝑥
= 1 + 𝛿.

We will denote by float numeric type the standard 64-bit

floating point numbers (like it is called in Python language

and not like C where it denotes 32-bit float). We implement

our library in Rust and therefore use its notation where

floating types are called f32 and f64. We extend standard

float (equal to Rust f64) type and call it xf64 (extended float

with 64 bits).

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/
mailto:i.netay@kryptonite.ru
https://orcid.org/0000-0002-0644-6148
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijainn.F1092.04061024&domain=www.ijainn.latticescipub.com

Algorithms and Data Structures for Numerical Computations with Automatic Precision Estimation

20

Published By:
Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024
DOI: 10.54105/ijainn.F1092.04061024

Journal Website: www.ijainn.latticescipub.com

Example 1.3. Consider equation Eq. (1). One can see

in Table 1 and Table 2, that computation with xf64

maintains the same number of mantissa bits (53) and

additionally shows precision of computation. Method

__str__ for xf64 was modified to substitute unreliable digits

of the number with question marks.

Table 1. Solution in the First Way

Type 𝒙1, 15 Digits 𝒙1, Exp. Form

float (64-bit) -1000.000000000000 -1.000000000000000e+03

xf64 -1000.00000000000? -1.00000000000000?e+03

type 𝒙𝟐, 𝟏𝟓 digits 𝒙𝟐, exp. form

float (64-bit) 0.000000000000057 5.684341886080801e-14

xf64 0.0000000000000?? ?.???????????????e-14

Table 2. Solution in the Second Way (Same for 𝒙𝟏)

Type 𝒙2, 15 Digits 𝒙2, Exp. Form

float (64-bit) 0.000000000000020 2.000000000000000e-14

xf64 0.000000000000020 2.00000000000000?e-14

B. Error Propagation in Function Computation

Given an approximation 𝑥
^

 of real value 𝑥 , we

approximate 𝑦 = 𝑓(𝑥) with some 𝑦
^

. For estimation of the

absolute error in 𝑦
^
, linear error estimation is usually applied:

|𝛥𝑦| = |𝑦
^

− 𝑦| = |𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)| ≈ |
𝑑𝑓(𝑥)

𝑑𝑥
|

𝑥=𝑥
^

⋅ |𝛥𝑥|.

For the relative error we obtain

|
𝑦
^

− 𝑦

𝑦
^ | ≈ |

𝑥
^

𝑓(𝑥
^

)
𝑓′(𝑥

^
)|

The number |
𝑥
^

𝑓(𝑥
^

)
𝑓′(𝑥

^
)| is called the condition number

𝒞𝑓(𝑥
^

) of function 𝑓(𝑥) at 𝑥
^

. It corresponds to the error

propagation coefficient of function 𝑓(𝑥) at 𝑥
^

. This means

that relative error 𝛿 in 𝑥
^
 leads to error of magnitude 𝒞𝑓(𝑥

^
) ⋅

𝛿 in 𝑓(𝑥
^

). It is easy to check that if 𝑥
^
 has 𝑠 significant bits,

then 𝑓(𝑥
^

) has 𝑠 − log
2

𝒞𝑓(𝑥
^

) exact bits. Examples of some

condition numbers for some standard floating point number

operations are listed in Table 3.

Table 3. Condition Numbers for Some Standard Operations

𝑓(𝑥) 𝒞𝑓(𝑥)

𝑥 + 𝑎 𝑥

𝑥 + 𝑎

𝑎𝑥 1

1/𝑥 1

𝑥𝑛 |𝑛|

ln(𝑥)
|

1

ln𝑥
|

sin𝑥 |𝑥∙cot𝑥|

cos𝑥 |𝑥 ∙ tan𝑥|

Function arcsin has poles at ±1. So, near to poles we can

see high precision loss:

 arcsin(0.999999) = 1.56?

 arcsin(0.999???) = 1.???
Here we calculate the function at 0.999999 with 6 and 3

exact digits. High condition number leads to high precision

loss.

C. Other Reasons of Results Divergence

Another important reason of variations in results of

numerical computations is lack of associativity for basic

operations like addition and multiplication for floating point

numbers used in programmatic computations (unlike

computations with real numbers ℝ).

Therefore, any action influencing the order of arithmetic

operations can change the precision of the result of the

entire computations. For instance,

▪ vectorization instructions in CPU,

▪ flags used during compilations of imported libraries

(e. g. -O2,-O3),

▪ any race condition of any form:

– any use of async/await,

– multithreading implementation details in

your operation system,

– Networking data transfer implementation

details in you cluster.

Also, different versions of core systems libraries like glibc

can cause some small differences and finally lead to some

more visible difference.

III. RELATED WORK

Mainly, other ways to check precision are the following:

1. try to redo computation with more bits in floats and

find the common part of the result;

2. start with some big enough number of digits/bits and

see the loss of significance in systems like pari/gp or

other libraries using gmp,

3. use interval arithmetics (like C++ boost/intervals).

Unfortunately, these ways have the following major issues:

▪ There is no any actual precision guarantee (1),

▪ Very low (2) or low (1, 3) performance,

▪ Very high (2) or high (1, 3) memory overhead,

▪ The computation should be redone from the beginning

and lead to some new result of some number data type.

So, there is no way to check precision of an existing

computation.

▪ Need to reproduce computation in other programming

languages (3 for most of cases).

We prefer to estimate precision of some existing

computation algorithm and track the estimation of its errors

alongside the main dataflow. Estimated inaccuracies are

stored in memory as numbers of exact mantissa bits.

Given initial data with some values of inaccuracies, we

cannot compute all the results and their inaccuracies

precisely, so we should choose between:

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-6, October 2024

21

Published By:
Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024
DOI: 10.54105/ijainn.F1092.04061024

Journal Website: www.ijainn.latticescipub.com

1. estimate inaccuracies from below (so parts of results

marked as inexact have no sense and should never be

interpreted),

2. estimate inaccuracies from above (so data marked as

inexact may have some computational errors, while all

the other data is exact),

3. something in the middle without any guaranties.

The most reliable and expensive way is to combine (1) and

(2). In this way mantissa bits are divided into three groups:

▪ “black” bits which are noisy and meaningless,

▪ “white” bits which are exact and reliable,

▪ “gray” bits in the middle part may depend on particular

software and hardware details, computational process

environment and other factors.

“Black” bits arise mainly from data inexactness and

mathematical error propagation. At the same time, “gray”

bits arise from numerically unstable algorithms. Actually,

some computations evaluate results depending on initial

data discontinuously and cannot be implemented with some

numerically stable algorithm.

For instance, computation of eigenvectors for ill

conditioned matrix would have big “gray” mantissa parts for

any algorithm.

IV. ISOLATION LEVEL FOR PRECISION

ESTIMATION

We can estimate precision of some computation in

different ways. Given a complex function, we can estimate

its common error propagation coefficient and can also do

the same for its parts step by step.

Although bigger fragmentation may provide a better

estimation, some standard functions may have specific

software and hardware implementation in some external

libraries. This imposes a restriction on subdivision level for

precision estimation.

For instance, computation of trigonometric functions

(usually dependent on glibc) or sum of array (that may be

vectorized and dependent on availability of AVX/SSE

instructions in CPU) should be estimated as atomic

numerical operations. Another difficult atomic operation

which is usually dependent on external libraries is matrix

multiplication (see §6.6).

Deatomization of complex operations like matrix

multiplication require reimplementation of corresponding

dependencies like blas/cublas/mkl. Such very powerful

tools cannot be easily modified and transferred to other

platforms and hardware settings, so they stay considered as

atomic for current work and near future releases (see §9).

V. DATA STRUCTURES AND BASIC PRECISION

ESTIMATIONS

Let us introduce numerical data types xf64 and others

(like xf32, xf16, xbf16) consisting of a

▪ floating point number of type f64 (or f32, f16, bf16)

representing real value,

▪ A number of type u8 (aka byte or unsigned char)

representing the number of exact bits of the real value.

We will call them extended floating point numbers.

We explain below how to make arithmetic operations and

calculate some mathematical functions with these numbers.

In all cases we assume that the result of computation with

real values is known and defined in IEEE 754, and we

provide a way to estimate precision of this result.

Some special values are zero and NaN/Inf’s. From the

construction, zero should always be maximally exact and

NaN/Inf’s cannot have any exact bits.

VI. PRECISION ESTIMATION FOR PARTICULAR

FUNCTIONS

A. Addition, Subtraction and Sum

Suppose we add two binary numbers with some given

white, gray and black bits. Then black bits of the result arise

from addition of black bits of any of summands and from

alignment to the left of the result. Estimation for gray bits

can be obtained as sum of arguments inaccuracies.

Note that estimation of precision for sum of many

numbers may differ from estimation if they were added one

by one due to possible upper rounding for gray bits.

B. Multiplication, Division and Product

Estimation of precision for multiplication can be easily

deduced to estimation of precision for addition. Let us

illustrate it by some examples.

For example, take 6 with one white, gray and one black

bits. Let us count exact bits of its square 36.

We see that gray bits can propagate its color to higher bits,

but black bits cannot. Black bits can induce higher bits to

become gray instead. If we multiply two bits, the color of

result is the darkest of arguments colors.

C. Rounding

Any rounding either keeps the argument the same (in this

case precision also is preserved), or change mantissa bits

from some place to the right with some combination from

some discrete predefined set. If the argument is changed, we

should compare the first inexact bit position and the first

changed bit position. If the first inexact bit position is lower

than (to the right from) the first changed bit position, then

the result of rounding have maximal possible number of

exact bits. Otherwise, the number of exact bits is the same

as in the argument. If the rounding gives zero, it is supposed

to be exact.

D. Maxima and Minima

It is well known that floating point numbers do not satisfy

axioms of linearly ordered set. Namely, checks of equality

fails on the reflexivity rule on special values NaN/inf.

Extended floating point numbers unexpectedly break

another common expectation that maximum and minimum

of two numbers are always equal to one of the numbers.

Namely, the numeric value is always equal to one of

numeric values of arguments, but the precision may come

from the other argument.

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/

Algorithms and Data Structures for Numerical Computations with Automatic Precision Estimation

22

Published By:
Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024
DOI: 10.54105/ijainn.F1092.04061024

Journal Website: www.ijainn.latticescipub.com

For example, for binary numbers 1.02 and 1.12 with 2

and 1 exact bits the minimum is 1.0 with 1 exact bit.

Indeed, it is not reasonable to set the numeric value of

minimum other than minimal of numerical values of

arguments. At the same time, minimum of 1. ? ?2 and 1.0?2

can not have more than 1 exact bit.

E. Differentiable Functions

Estimation of precision for differentiable functions is

based on computation of the corresponding condition

number. The standard floating point functions have explicit

derivatives expressed in elementary functions. Given the

number of exact bits in argument, we can compute relative

error for value returned from the function. Thus, we can

directly obtain estimation of result exact bits.

In this case we consider any such function as an atomic

numeric operation which does not depend on particular

implementation.

F. Matrix Multiplication and Tropical Semi-Ring

Estimation of matrix multiplication precision is a hard

problem, because of performance issues. Actually, direct

matrix multiplication by the definition is very rarely applied

due to its computation complexity (naive implementation

needs 𝑂(𝑛3) operations for matrices 𝑛 × 𝑛).

Let us recall some notation.

Tropical semi-ring is a set of numbers and ∞ (−∞) with

two binary operations min (max) and + with axioms like for

ones for usual numeric ring except group law for min (max):

there is no inverse operation, so it is called semi-ring instead

of ring.

Usually, it is considered with ∞ and min, but we need to

complement this structure with −∞ and max due to error

estimation context.

Tropical matrix multiplication ⊙ (also know as min-plus

matrix multiplication) is a matrix product over tropical

semi-ring. So, matrix elements can be obtained by usual

matrix multiplication with replacement of + and ⋅ with max

and +.

Effective tropical matrix multiplication is a difficult

problem with many approaches to particular optimizable

cases (see [1,2,3][6][7]).

Unfortunately, our case does not fall into any of these

cases. At the same time, we can estimate tropical matrix

product from below instead of performing its precise

numeric computation.

Theorem 5.1. Let 𝐴, 𝐵 , and 𝐶 are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴

(resp. 𝐵, 𝐶) has inaccuracies 𝒜 (resp. ℬ and 𝒞). Then

𝒞 ≥ 𝒜 ⊙ ℬ.
In particular, the following inequality holds:

𝒜 ⊙ ℬ ≥
1

𝑛
⋅ log

2
(2𝒜 ⋅ 2ℬ),

where power of 2 and log
2
 are applied element-wise.

Proof. We can proof this element-wise over 𝐶 and 𝒞. So

we can put𝑚 = 𝑘 = 1. The needed inequality follows from

the inequality between mean and max:

2𝔠 ≥ max(2𝔞1+𝔟1, … , 2𝔞𝑛+𝔟𝑛) ≥
1

𝑛
∑ 2𝔞1+𝔟1𝑛

𝑖=1 , (4)

where 𝒜 is the row (𝔞1, … , 𝔞𝑛) , and 𝐵 is the

column (𝔟1, … , 𝔟𝑛) , and 𝒞 is the 1 × 1 matrix (𝔠) . This

inequality is obvious.

Actually, this inequality (applied in xnumpy-1.0.0, see §9)

gives an estimation that can be easily strengthened by the

following. □

Theorem 5.2. Let 𝐴, 𝐵 , and 𝐶 are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴

(resp. 𝐵, 𝐶) has inaccuracies 𝒜 (resp. ℬ and 𝒞). Then

2𝒞 ≥ max(𝐴 ⊙ 2ℬ , 2𝒜 ⊙ 𝐵),
where power of 2 and max are applied element-wise.

Proof. This estimate is stricter (applied in xnumpy-1.0.1,

see §9) and gives more exact estimation of matrix

multiplication precision.

The proof can be proceeded in almost the same manner

like the proof of Theorem 5.1 with replacement of the initial

precision estimation.

There we estimate absolute inaccuracy value for product

of two numbers from below by the product of their absolute

inaccuracies. We can replace the right-hand side by the

maximum of one of multipliers multiplied with absolute

value of inaccuracy of another one. So, Eq. (4) becomes

2𝔠 ≥ max(𝑏1 ⋅ 2𝔞1 , 𝑎1 ⋅ 2𝔟1 , … , 𝑏𝑛 ⋅ 2𝔞𝑛, 𝑎𝑛 ⋅ 2𝔟𝑛)

Remaining part of the proof is similar. □

Estimation for tropical product of matrices is identical for

Theorems 6.1 and 6.2. We will propose a stronger

estimation in §7.

This estimation can be performed with three usual matrix

multiplications and additional memory usage for 𝒜, ℬ and

twice for 𝒞 (actually, they can be allocated by a single

malloc/free-pair to avoid excessive heap allocations).

G. Gradients in Neural Networks

The most widely used frameworks for neural networks

(Tensorflow and Torch) are based on automatic gradient

computation and errors backpropagation. Gradients are

computed as partial derivatives for provided collection of

functions (basic collection can be extended by user-defined

functions with gradients). So, the computation does not

actually involve numeric differentiation. At the same time,

training of neural network until its convergence can lead to

subtraction of close numbers and very small inexact values

of the loss function. As a result, gradients can become

inexact, and the neural network can lose numerical stability.

Calculation of precision for gradients requires calculation

of derivatives for arithmetic functions and standard

collection of trigonometric and other functions. So, it can be

deduced to previously discussed cases. Gradients of matrix

multiplication can be deduced to matrix multiplication with

transposed matrix. Namely, if we have matrices 𝐴 and 𝐵 ,

and 𝐴 ⋅ 𝐵 receives gradient 𝐺, then gradients for 𝐴 and 𝐵 are

equal, respectively, 𝐺 ⋅ 𝐵𝑇and 𝐴𝑇𝐺. So, if some of matrices

𝐴 and 𝐵 is inexact, then its inexactness contribute to

inexactness in both forward and backward propagation

steps. Precision of convolution layers and their gradients are

calculated analogously to the same for matrix

multiplications.

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-6, October 2024

23

Published By:
Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024
DOI: 10.54105/ijainn.F1092.04061024

Journal Website: www.ijainn.latticescipub.com

VII. HÖLDER’S INEQUALITY AND MATRIX

MULTIPLICATION PRECISION

Theorem 6.1. Let 𝐴, 𝐵 , and 𝐶 are matrices such that 𝐴 ⋅
𝐵 = 𝐶 . Suppose that 𝐴 (resp. 𝐵 , 𝐶) has

inaccuracies 𝒜 (resp. ℬ and 𝒞). Then

𝒞 ≥ 𝒜 ⊙ ℬ.
In particular, the following inequality holds for any 𝑝 > 1:

𝒜 ⊙ ℬ ≥
1

𝑛𝑝
⋅ log

2
(2𝑝𝒜 ⋅ 2𝑝ℬ),

where power of 2 and log
2
 are applied element-wise.

The proof is actually the same with replacement of

inequality between the mean value and maximum with

inequality between of generalized mean (also known as

“power mean”) of degree 𝑝.

This seems to be trivial due to addition of 𝑝 into power of

2 and into the division outside of logarithm. Actually, it is

not trivial, because the dot inside the brackets means matrix

multiplication, so we can not reduce 𝑝 in the formula above.

Moreover, there is generalized mean inequality (also known

as “Hölder’s inequality”)

𝑀𝑝(𝑥1, … , 𝑥𝑛) ≤ 𝑀𝑞(𝑥1, … , 𝑚𝑛),

for 𝑝 < 𝑞, where

𝑀𝑝(𝑥1, … , 𝑥𝑛): = √
1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

𝑝

.

and the limit property

lim
𝑝→∞

𝑀𝑝(𝑥1, … , 𝑥𝑛) = max(𝑥1, … , 𝑥𝑛).

It seems that taking this inequality for large 𝑝 can give a

better estimation of tropical product. But its application is

limited by floating point overflows.

Theorem 6.2. Let 𝐴, 𝐵, and 𝐶 are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴

(resp. 𝐵, 𝐶) has inaccuracies 𝒜 (resp. ℬ and 𝒞). Then

2𝑝⋅𝒞 ≥ max(𝐴 ⊙ 2𝑝⋅ℬ, 2𝑝⋅𝒜 ⊙ 𝐵),
for any 𝑝 > 1 , where power of 2 and max are applied

element-wise.

Proof. This Theorem is simply a combination of

Theorems 5.2 and 6.1. □

VIII. IMPLEMENTATION

We provide an implementation of our approach (see
https://github.com/netay/xnumpy and

https://gitflic.ru/project/kryptodpi/xnumpy) by extending widely

applied NumPy library (see [4]). There “black bits” are

estimated, i. e. if bits or digits are shown as inexact by this

library, then they are meaningless.

One exception is precision computation for matrix

product. If we compute matrix product, we rely on its

numerical values provided by libraries like blas/cublas/mkl.

At the same time, precision computation itself requires

matrix multiplication. Due to performance reasons, these

matrix multiplications are also computed by the same

libraries, although in some cases it can give inexact matrix

elements, and this can imply sometimes inexact precision

estimations. But if we rely on some bit inexact numerical

values, then we can rely on some bit inexact precision

estimation in the same numerical computation.

Actually, some minor inaccuracies for the condition

number computation can also happen, but they are usually

can be omitted.

IX. CONCLUSIONS

Here we consider well known issues related to

computations with floating point numbers. These

computations are standard, but they introduce numerical

inaccuracies that can lead to loss of significance for all the

computation. It may be crucial for computations with huge

number of floating point operations and high rate of

quantization like neural networks training. We provide

algorithms and their implementations for automatic

estimation of inaccuracies during computations. It can help

to avoid making unreliable conclusions based on inaccurate

computations.

X. FUTURE WORK

All these estimations hold independent upon platform,

software and hardware details. The implementation is

already available for CPU and will be extended for GPU.

Also, more advanced algorithms such as linear algebra and

statistic methods will be overloaded to support precision

loss tracking automagically.

XI. ACKNOWLEDGMENTS

The author is grateful to his Kryptonite colleagues Vasily

Dolmatov, Dr. Nikita Gabdullin and Dr. Anton Raskovalov

for fruitful discussions of topic and results and for assistance

in testing the xnumpy library.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the

accuracy of the following information as the article's author.

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of

interest.

▪ Funding Support: This article has not been funded by

any organizations or agencies. This independence

ensures that the research is conducted with objectivity

and without any external influence.

▪ Ethical Approval and Consent to Participate: The

content of this article does not necessitate ethical

approval or consent to participate with supporting

documentation.

▪ Data Access Statement and Material

Availability: The adequate resources of this article are

publicly accessible.

▪ Authors Contributions: The authorship of this article is

contributed equally to all participating individuals.

REFERENCES

1. Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-

plus product for monotone instances. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages

1529–1542, 2022. https://doi.org/10.1145/3519935.3520057

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/
https://github.com/netay/xnumpy
https://doi.org/10.1145/3519935.3520057

Algorithms and Data Structures for Numerical Computations with Automatic Precision Estimation

24

Published By:
Lattice Science Publication (LSP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijainn.F109204061024
DOI: 10.54105/ijainn.F1092.04061024

Journal Website: www.ijainn.latticescipub.com

2. Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz

Venzin, and Robert Weismantel. Efficient sequential and parallel
algorithms for multistage stochastic integer programming using

proximity. arXiv preprint arXiv:2012.11742, 2020.

https://doi.org/10.48550/arXiv.2012.11742

3. Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan

Xu. Faster monotone min-plus product, range mode, and single source
replacement paths. arXiv preprint arXiv:2105.02806, 2021.

https://doi.org/10.48550/arXiv.2105.02806

4. Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian

Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Rıó, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September

2020. https://doi.org/10.1038/s41586-020-2649-2

5. Igor V. Netay. Influence of digital fluctuations on behavior of neural

networks. Indian Journal of Artificial Intelligence and Neural
Networking (IJAINN), 3:1–7, December 2022.

DOI: 10.54105/ijainn.A1061.123122

6. Mohanty, S., & Sahoo, B. (2020). Parallel Algorithms for Discovering
Planted (l, d) Motif. In International Journal of Innovative Technology

and Exploring Engineering (Vol. 9, Issue 4, pp. 1452–1461).

https://doi.org/10.35940/ijitee.d1521.029420
7. Mustafa Basthikodi, Ahmed Rimaz Faizabadi, Waseem Ahmed, HPC

Based Algorithmic Species Extraction Tool for Automatic

Parallelization of Program Code. (2019). In International Journal of
Recent Technology and Engineering (Vol. 8, Issue 2S3, pp. 1004–

1009). https://doi.org/10.35940/ijrte.b1188.0782s319

8. Kumar, P., & Rawat, S. (2019). Implementing Convolutional Neural
Networks for Simple Image Classification. In International Journal of

Engineering and Advanced Technology (Vol. 9, Issue 2, pp. 3616–

3619). https://doi.org/10.35940/ijeat.b3279.129219
9. Young, L., York, J. R., & Kil Lee, B. (2023). Implications of Deep

Compression with Complex Neural Networks. In International Journal

of Soft Computing and Engineering (Vol. 13, Issue 3, pp. 1–6).
https://doi.org/10.35940/ijsce.c3613.0713323

10. Magapu, H., Krishna Sai, M. R., & Goteti, B. (2024). Human Deep

Neural Networks with Artificial Intelligence and Mathematical
Formulas. In International Journal of Emerging Science and

Engineering (Vol. 12, Issue 4, pp. 1–2).

https://doi.org/10.35940/ijese.c9803.12040324

AUTHORS PROFILE

Igor V. Netay, MS in Mathematics in MSU and IUM,

Moscow, Russia; PhD in IITP, Moscow, Russia. He is a
researcher at JSRPC Kryptonite and at IITP. The

principal areas of research in which the author has

worked are: Neural Networks, Machine Learning,
Algebraic Geometry, Algebraic Topology,

Representation Theory, Dynamical systems. (1) I. V. Netai, “Parabolically

connected subgroups”, Mat. Sb., 202:8 (2011), 81–94; Sb. Math., 202:8
(2011), 1169–1182 (2) I. V. Netay, “Syzygy Algebras for Segre

Embeddings”, Funkts. Anal. Prilozh., 47:3 (2013), 54–74; Funct. Anal.

Appl., 47:3 (2013), 210–226 (3) V. V. Buchstaber, I. V. Netay, “Hirzebruch
functional equation and elliptic functions of level d”, Funct. Anal. Appl.,

49:4 (2015) (4) I. V. Netay, “Syzygies of quadratic Veronese embedding”,

Sb. Math., 208:2 (2017) (5) Igor V. Netay, Alexei V. Savvateev, “Sharygin
Triangles and Elliptic Curves", Bull. Korean Math. Soc., 54:5 (2017),

1597-1617. (6) I.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Lattice

Science Publication (LSP)/ journal and/ or the editor(s). The

Lattice Science Publication (LSP)/ journal and/or the

editor(s) disclaim responsibility for any injury to people or

property resulting from any ideas, methods, instructions or

products referred to in the content.

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/
https://doi.org/10.48550/arXiv.2012.11742
https://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.54105/ijainn.A1061.123122
https://doi.org/10.35940/ijitee.d1521.029420
https://doi.org/10.35940/ijrte.b1188.0782s319
https://doi.org/10.35940/ijeat.b3279.129219
https://doi.org/10.35940/ijsce.c3613.0713323
https://doi.org/10.35940/ijese.c9803.12040324

