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Abstract: We introduce data structures and algorithms to 

count numerical inaccuracies arising from usage of floating 

numbers described in IEEE 754. Here we describe how to 

estimate precision for some collection of functions most 

commonly used for array manipulations and training of neural 

networks. For highly optimized functions like matrix 

multiplication, we provide a fast estimation of precision and some 

hint how the estimation can be strengthened. 
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I. INTRODUCTION

Numerical calculations with floating point numbers

almost always are inexact. The simplest known example is 

 0.1 + 0.2   ! = 0.3, 

which holds for almost all programming languages. This 

example illustrates the consequences of non-exact 

conversion from decimal number literals to binary float 

number representation. At the same time, computations with 

floating point binary numbers are themselves inexact. 

Another well-known example shows that the values of 

roots of quadratic equation depend on way the solution was 

computed. Consider equation: 

𝑥2 + 1000𝑥 − 2 ∙ 10−11 = 0. (1)

If we find the roots as 
−𝑏±√𝐷

2𝑎
for 𝐷 = 𝑏2 − 4𝑎𝑐 for 𝑎𝑥2 +

𝑏𝑥 + 𝑐 = 0 , then for Eq.(1) we get one root 𝑥 = −1000 

with 53 exact bits (maximal number for 64-bit float) and 

other root ≈ 5.7 ∙ 10−14 without any exact bits. If we will

compute the roots in other way: 

𝑥1 =
−𝑏−𝑠𝑔𝑛(𝑏)√𝐷

2𝑎
 . (2) 

𝑥2 =
𝑐

𝑎∙𝑥1
,  (3) 

Then we get 𝑥1 = −1000 and 𝑥2 = 2 ∙ 10−14 with all 53

bits exact for both roots. 

The example above shows that accuracy of the result 

depends on way of computation frequently. Actually, 

usually one cannot easily guess a proper way to get 

maximally exact results. Moreover, one cannot get exact 

results for any arithmetic operation. Subtraction of numbers 

that are close to each other is the worst possible case.  
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During this operation accuracy of the result drops 

drastically and there is no way to avoid it. Two 

mathematically equivalent ways to compute the same 

expression can lead to different numerical results, and it 

may be unclear which one is closer to correct mathematical 

value. This fact was the motivation for us to implement 

means to estimate loss of precision during computations and 

to track exact mantissa bits in the results. Also, this helps 

one to avoid wrong conclusions based upon possible 

interpretations of numerical noise as meaningful data. 

Calculations with huge arrays of numbers and arithmetic 

operations involved like training of neural networks usually 

lead to high accumulated digital noise in the result 

(see [5][8][9][10]). Actually, even simpler numerical 

computations can lead to inexact (and unreliable) results 

frequently. For instance, among such computations are 

inversion of ill-conditioned matrices and solutions of ill-

conditioned systems of linear equations. 

We do not provide new ways to invert matrix or to solve 

linear systems or to perform any other computations. 

Instead, we enhanced standard library algorithms with 

additional digital error computation and its tracking that will 

automagically indicate whether the result is reliable or it 

should be discarded and more precise algorithms (or 

different computational approaches) are needed. 

Usual goal of numerical analysis problem is to design 

algorithms to construct maximally or enough precise 

approximations of mathematical objects. Now for many 

applied problems numerical precision is ignored, and 

computations are constructed from some standard functions 

provided by well-known libraries. Here we propose the 

answer for the problem of inaccuracy estimation for a given 

model and algorithm. For practical potentially unreliable 

algorithm calculation of precision should be performed and 

may lead to searching for some more reliable algorithms. 

II. NUMERICAL PRELIMINARIES

A. Errors

Suppose we calculate an approximation 𝑥
^
 of real value 𝑥. 

Absolute error is defined as |𝛥𝑥| = |𝑥
^

− 𝑥|. 

Relative error is defined as 𝛿 such that 
𝑥
^

𝑥
= 1 + 𝛿.

We will denote by float numeric type the standard 64-bit 

floating point numbers (like it is called in Python language 

and not like C where it denotes 32-bit float). We implement 

our library in Rust and therefore use its notation where 

floating types are called f32 and f64. We extend standard 

float (equal to Rust f64) type and call it xf64 (extended float 

with 64 bits). 
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Example 1.3. Consider equation Eq. (1). One can see 

in Table 1 and Table 2, that computation with xf64 

maintains the same number of mantissa bits ( 53 ) and 

additionally shows precision of computation. Method 

__str__ for xf64 was modified to substitute unreliable digits 

of the number with question marks. 

Table 1. Solution in the First Way 

Type 𝒙1, 15 Digits 𝒙1, Exp. Form 

float (64-bit) -1000.000000000000 -1.000000000000000e+03 

xf64 -1000.00000000000? -1.00000000000000?e+03 

type 𝒙𝟐, 𝟏𝟓 digits 𝒙𝟐, exp. form 

float (64-bit) 0.000000000000057 5.684341886080801e-14 

xf64 0.0000000000000?? ?.???????????????e-14 

Table 2. Solution in the Second Way (Same for 𝒙𝟏) 

Type 𝒙2, 15 Digits 𝒙2, Exp. Form 

float (64-bit) 0.000000000000020 2.000000000000000e-14 

xf64 0.000000000000020 2.00000000000000?e-14 

B. Error Propagation in Function Computation 

Given an approximation 𝑥
^

 of real value 𝑥 , we 

approximate 𝑦 = 𝑓(𝑥) with some 𝑦
^

. For estimation of the 

absolute error in 𝑦
^
, linear error estimation is usually applied: 

|𝛥𝑦| = |𝑦
^

− 𝑦| = |𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)| ≈ |
𝑑𝑓(𝑥)

𝑑𝑥
|

𝑥=𝑥
^

⋅ |𝛥𝑥|. 

For the relative error we obtain 

|
𝑦
^

− 𝑦

𝑦
^ | ≈ |

𝑥
^

𝑓(𝑥
^

)
𝑓′(𝑥

^
)| 

The number |
𝑥
^

𝑓(𝑥
^

)
𝑓′(𝑥

^
)|  is called the condition number 

𝒞𝑓(𝑥
^

)  of function 𝑓(𝑥)  at 𝑥
^

. It corresponds to the error 

propagation coefficient of function 𝑓(𝑥) at 𝑥
^

. This means 

that relative error 𝛿 in 𝑥
^
 leads to error of magnitude 𝒞𝑓(𝑥

^
) ⋅

𝛿 in 𝑓(𝑥
^

). It is easy to check that if 𝑥
^
 has 𝑠 significant bits, 

then 𝑓(𝑥
^

) has 𝑠 − log
2

𝒞𝑓(𝑥
^

) exact bits. Examples of some 

condition numbers for some standard floating point number 

operations are listed in Table 3. 

Table 3. Condition Numbers for Some Standard Operations 

𝑓(𝑥) 𝒞𝑓(𝑥) 

𝑥 + 𝑎 𝑥

𝑥 + 𝑎
 

𝑎𝑥 1 

1/𝑥 1 

𝑥𝑛 |𝑛| 

ln(𝑥) 
|

1

ln𝑥
| 

sin𝑥 |𝑥∙cot𝑥| 

cos𝑥 |𝑥 ∙ tan𝑥| 

Function arcsin has poles at ±1. So, near to poles we can 

see high precision loss: 

    arcsin(0.999999) = 1.56? 

    arcsin(0.999???) = 1.??? 
Here we calculate the function at 0.999999 with 6 and 3 

exact digits. High condition number leads to high precision 

loss. 

C. Other Reasons of Results Divergence 

Another important reason of variations in results of 

numerical computations is lack of associativity for basic 

operations like addition and multiplication for floating point 

numbers used in programmatic computations (unlike 

computations with real numbers ℝ). 

Therefore, any action influencing the order of arithmetic 

operations can change the precision of the result of the 

entire computations. For instance, 

▪ vectorization instructions in CPU, 

▪ flags used during compilations of imported libraries 

(e. g. -O2,-O3), 

▪ any race condition of any form: 

– any use of async/await, 

– multithreading implementation details in 

your operation system, 

– Networking data transfer implementation 

details in you cluster. 

Also, different versions of core systems libraries like glibc 

can cause some small differences and finally lead to some 

more visible difference. 

III. RELATED WORK 

Mainly, other ways to check precision are the following: 

1. try to redo computation with more bits in floats and 

find the common part of the result; 

2. start with some big enough number of digits/bits and 

see the loss of significance in systems like pari/gp or 

other libraries using gmp, 

3. use interval arithmetics (like C++ boost/intervals). 

Unfortunately, these ways have the following major issues: 

▪ There is no any actual precision guarantee (1), 

▪ Very low (2) or low (1, 3) performance, 

▪ Very high (2) or high (1, 3) memory overhead, 

▪ The computation should be redone from the beginning 

and lead to some new result of some number data type. 

So, there is no way to check precision of an existing 

computation. 

▪ Need to reproduce computation in other programming 

languages (3 for most of cases). 

We prefer to estimate precision of some existing 

computation algorithm and track the estimation of its errors 

alongside the main dataflow. Estimated inaccuracies are 

stored in memory as numbers of exact mantissa bits. 

Given initial data with some values of inaccuracies, we 

cannot compute all the results and their inaccuracies 

precisely, so we should choose between: 
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1. estimate inaccuracies from below (so parts of results 

marked as inexact have no sense and should never be 

interpreted), 

2. estimate inaccuracies from above (so data marked as 

inexact may have some computational errors, while all 

the other data is exact), 

3. something in the middle without any guaranties. 

The most reliable and expensive way is to combine (1) and 

(2). In this way mantissa bits are divided into three groups: 

▪ “black” bits which are noisy and meaningless, 

▪ “white” bits which are exact and reliable, 

▪ “gray” bits in the middle part may depend on particular 

software and hardware details, computational process 

environment and other factors. 

“Black” bits arise mainly from data inexactness and 

mathematical error propagation. At the same time, “gray” 

bits arise from numerically unstable algorithms. Actually, 

some computations evaluate results depending on initial 

data discontinuously and cannot be implemented with some 

numerically stable algorithm. 

For instance, computation of eigenvectors for ill 

conditioned matrix would have big “gray” mantissa parts for 

any algorithm. 

IV. ISOLATION LEVEL FOR PRECISION 

ESTIMATION 

We can estimate precision of some computation in 

different ways. Given a complex function, we can estimate 

its common error propagation coefficient and can also do 

the same for its parts step by step. 

Although bigger fragmentation may provide a better 

estimation, some standard functions may have specific 

software and hardware implementation in some external 

libraries. This imposes a restriction on subdivision level for 

precision estimation. 

For instance, computation of trigonometric functions 

(usually dependent on glibc) or sum of array (that may be 

vectorized and dependent on availability of AVX/SSE 

instructions in CPU) should be estimated as atomic 

numerical operations. Another difficult atomic operation 

which is usually dependent on external libraries is matrix 

multiplication (see §6.6). 

Deatomization of complex operations like matrix 

multiplication require reimplementation of corresponding 

dependencies like blas/cublas/mkl. Such very powerful 

tools cannot be easily modified and transferred to other 

platforms and hardware settings, so they stay considered as 

atomic for current work and near future releases (see §9). 

V. DATA STRUCTURES AND BASIC PRECISION 

ESTIMATIONS 

Let us introduce numerical data types xf64 and others 

(like xf32, xf16, xbf16) consisting of a 

▪ floating point number of type f64 (or f32, f16, bf16) 

representing real value, 

▪ A number of type u8 (aka byte or unsigned char) 

representing the number of exact bits of the real value. 

We will call them extended floating point numbers. 

We explain below how to make arithmetic operations and 

calculate some mathematical functions with these numbers. 

In all cases we assume that the result of computation with 

real values is known and defined in IEEE 754, and we 

provide a way to estimate precision of this result. 

Some special values are zero and NaN/Inf’s. From the 

construction, zero should always be maximally exact and 

NaN/Inf’s cannot have any exact bits. 

VI. PRECISION ESTIMATION FOR PARTICULAR 

FUNCTIONS 

A.  Addition, Subtraction and Sum 

Suppose we add two binary numbers with some given 

white, gray and black bits. Then black bits of the result arise 

from addition of black bits of any of summands and from 

alignment to the left of the result. Estimation for gray bits 

can be obtained as sum of arguments inaccuracies. 

Note that estimation of precision for sum of many 

numbers may differ from estimation if they were added one 

by one due to possible upper rounding for gray bits. 

B.  Multiplication, Division and Product 

Estimation of precision for multiplication can be easily 

deduced to estimation of precision for addition. Let us 

illustrate it by some examples. 

For example, take 6 with one white, gray and one black 

bits. Let us count exact bits of its square 36. 

 
We see that gray bits can propagate its color to higher bits, 

but black bits cannot. Black bits can induce higher bits to 

become gray instead. If we multiply two bits, the color of 

result is the darkest of arguments colors. 

C.  Rounding 

Any rounding either keeps the argument the same (in this 

case precision also is preserved), or change mantissa bits 

from some place to the right with some combination from 

some discrete predefined set. If the argument is changed, we 

should compare the first inexact bit position and the first 

changed bit position. If the first inexact bit position is lower 

than (to the right from) the first changed bit position, then 

the result of rounding have maximal possible number of 

exact bits. Otherwise, the number of exact bits is the same 

as in the argument. If the rounding gives zero, it is supposed 

to be exact. 

D.  Maxima and Minima 

It is well known that floating point numbers do not satisfy 

axioms of linearly ordered set. Namely, checks of equality 

fails on the reflexivity rule on special values NaN/inf. 

Extended floating point numbers unexpectedly break 

another common expectation that maximum and minimum 

of two numbers are always equal to one of the numbers. 

Namely, the numeric value is always equal to one of 

numeric values of arguments, but the precision may come 

from the other argument. 
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For example, for binary numbers 1.02  and 1.12  with 2 

and 1  exact bits the minimum is 1.0  with 1  exact bit. 

Indeed, it is not reasonable to set the numeric value of 

minimum other than minimal of numerical values of 

arguments. At the same time, minimum of 1. ? ?2 and 1.0?2 

can not have more than 1 exact bit. 

E.  Differentiable Functions 

Estimation of precision for differentiable functions is 

based on computation of the corresponding condition 

number. The standard floating point functions have explicit 

derivatives expressed in elementary functions. Given the 

number of exact bits in argument, we can compute relative 

error for value returned from the function. Thus, we can 

directly obtain estimation of result exact bits. 

In this case we consider any such function as an atomic 

numeric operation which does not depend on particular 

implementation. 

F.  Matrix Multiplication and Tropical Semi-Ring 

Estimation of matrix multiplication precision is a hard 

problem, because of performance issues. Actually, direct 

matrix multiplication by the definition is very rarely applied 

due to its computation complexity (naive implementation 

needs 𝑂(𝑛3) operations for matrices 𝑛 × 𝑛). 

Let us recall some notation. 

Tropical semi-ring is a set of numbers and ∞ (−∞) with 

two binary operations min (max) and + with axioms like for 

ones for usual numeric ring except group law for min (max): 

there is no inverse operation, so it is called semi-ring instead 

of ring. 

Usually, it is considered with ∞ and min, but we need to 

complement this structure with −∞  and max  due to error 

estimation context. 

Tropical matrix multiplication ⊙ (also know as min-plus 

matrix multiplication) is a matrix product over tropical 

semi-ring. So, matrix elements can be obtained by usual 

matrix multiplication with replacement of + and ⋅ with max 

and +. 

Effective tropical matrix multiplication is a difficult 

problem with many approaches to particular optimizable 

cases (see [1,2,3][6][7]). 

Unfortunately, our case does not fall into any of these 

cases. At the same time, we can estimate tropical matrix 

product from below instead of performing its precise 

numeric computation. 

Theorem 5.1. Let 𝐴, 𝐵 , and 𝐶  are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴 

(resp. 𝐵, 𝐶) has inaccuracies 𝒜  (resp. ℬ and 𝒞). Then 

𝒞 ≥ 𝒜 ⊙ ℬ. 
In particular, the following inequality holds: 

𝒜 ⊙ ℬ ≥
1

𝑛
⋅ log

2
(2𝒜 ⋅ 2ℬ), 

where power of 2 and log
2
 are applied element-wise. 

Proof. We can proof this element-wise over 𝐶 and 𝒞. So 

we can put𝑚 = 𝑘 = 1. The needed inequality follows from 

the inequality between mean and max: 

2𝔠 ≥ max(2𝔞1+𝔟1, … , 2𝔞𝑛+𝔟𝑛) ≥
1

𝑛
∑ 2𝔞1+𝔟1𝑛

𝑖=1 ,  (4) 

where 𝒜  is the row (𝔞1, … , 𝔞𝑛) , and 𝐵  is the 

column (𝔟1, … , 𝔟𝑛) , and 𝒞  is the 1 × 1  matrix (𝔠) . This 

inequality is obvious. 

Actually, this inequality (applied in xnumpy-1.0.0, see §9) 

gives an estimation that can be easily strengthened by the 

following. □ 

Theorem 5.2. Let 𝐴, 𝐵 , and 𝐶  are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴 

(resp. 𝐵, 𝐶) has inaccuracies 𝒜  (resp. ℬ and 𝒞). Then 

2𝒞 ≥ max(𝐴 ⊙ 2ℬ , 2𝒜 ⊙ 𝐵), 
where power of 2 and max are applied element-wise. 

Proof. This estimate is stricter (applied in xnumpy-1.0.1, 

see §9) and gives more exact estimation of matrix 

multiplication precision. 

The proof can be proceeded in almost the same manner 

like the proof of Theorem 5.1 with replacement of the initial 

precision estimation. 

There we estimate absolute inaccuracy value for product 

of two numbers from below by the product of their absolute 

inaccuracies. We can replace the right-hand side by the 

maximum of one of multipliers multiplied with absolute 

value of inaccuracy of another one. So, Eq. (4) becomes 

2𝔠 ≥ max(𝑏1 ⋅ 2𝔞1 , 𝑎1 ⋅ 2𝔟1 , … , 𝑏𝑛 ⋅ 2𝔞𝑛, 𝑎𝑛 ⋅ 2𝔟𝑛) 

Remaining part of the proof is similar. □ 

Estimation for tropical product of matrices is identical for 

Theorems 6.1 and 6.2. We will propose a stronger 

estimation in §7. 

This estimation can be performed with three usual matrix 

multiplications and additional memory usage for 𝒜, ℬ and 

twice for 𝒞  (actually, they can be allocated by a single 

malloc/free-pair to avoid excessive heap allocations). 

G. Gradients in Neural Networks 

The most widely used frameworks for neural networks 

(Tensorflow and Torch) are based on automatic gradient 

computation and errors backpropagation. Gradients are 

computed as partial derivatives for provided collection of 

functions (basic collection can be extended by user-defined 

functions with gradients). So, the computation does not 

actually involve numeric differentiation. At the same time, 

training of neural network until its convergence can lead to 

subtraction of close numbers and very small inexact values 

of the loss function. As a result, gradients can become 

inexact, and the neural network can lose numerical stability. 

Calculation of precision for gradients requires calculation 

of derivatives for arithmetic functions and standard 

collection of trigonometric and other functions. So, it can be 

deduced to previously discussed cases. Gradients of matrix 

multiplication can be deduced to matrix multiplication with 

transposed matrix. Namely, if we have matrices 𝐴  and 𝐵 , 

and 𝐴 ⋅ 𝐵 receives gradient 𝐺, then gradients for 𝐴 and 𝐵 are 

equal, respectively, 𝐺 ⋅ 𝐵𝑇and 𝐴𝑇𝐺. So, if some of matrices 

𝐴  and 𝐵  is inexact, then its inexactness contribute to 

inexactness in both forward and backward propagation 

steps. Precision of convolution layers and their gradients are 

calculated analogously to the same for matrix 

multiplications. 

https://doi.org/10.54105/ijainn.F1092.04061024
https://doi.org/10.54105/ijainn.F1092.04061024
http://www.ijainn.latticescipub.com/


Indian Journal of Artificial Intelligence and Neural Networking (IJAINN) 

ISSN: 2582-7626 (Online), Volume-4 Issue-6, October 2024 

 

23 

 

Published By: 
Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

 

Retrieval Number: 100.1/ijainn.F109204061024 
DOI: 10.54105/ijainn.F1092.04061024 

Journal Website: www.ijainn.latticescipub.com 

 
 

VII. HÖLDER’S INEQUALITY AND MATRIX 

MULTIPLICATION PRECISION 

Theorem 6.1. Let 𝐴, 𝐵 , and 𝐶  are matrices such that 𝐴 ⋅
𝐵 = 𝐶 . Suppose that 𝐴  (resp. 𝐵 , 𝐶 ) has 

inaccuracies 𝒜  (resp. ℬ and 𝒞). Then 

𝒞 ≥ 𝒜 ⊙ ℬ. 
In particular, the following inequality holds for any 𝑝 > 1: 

𝒜 ⊙ ℬ ≥
1

𝑛𝑝
⋅ log

2
(2𝑝𝒜 ⋅ 2𝑝ℬ), 

where power of 2 and log
2
 are applied element-wise. 

The proof is actually the same with replacement of 

inequality between the mean value and maximum with 

inequality between of generalized mean (also known as 

“power mean”) of degree 𝑝. 

This seems to be trivial due to addition of 𝑝 into power of 

2 and into the division outside of logarithm. Actually, it is 

not trivial, because the dot inside the brackets means matrix 

multiplication, so we can not reduce 𝑝 in the formula above. 

Moreover, there is generalized mean inequality (also known 

as “Hölder’s inequality”) 

𝑀𝑝(𝑥1, … , 𝑥𝑛) ≤ 𝑀𝑞(𝑥1, … , 𝑚𝑛), 

for 𝑝 < 𝑞, where 

𝑀𝑝(𝑥1, … , 𝑥𝑛): = √
1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

𝑝

. 

and the limit property 

lim
𝑝→∞

𝑀𝑝(𝑥1, … , 𝑥𝑛) = max(𝑥1, … , 𝑥𝑛). 

It seems that taking this inequality for large 𝑝 can give a 

better estimation of tropical product. But its application is 

limited by floating point overflows. 

Theorem 6.2. Let 𝐴, 𝐵, and 𝐶 are matrices such that 𝐴 ⋅
𝐵 = 𝐶 of shapes (𝑚 × 𝑛, 𝑛 × 𝑘 and 𝑚 × 𝑘). Suppose that 𝐴 

(resp. 𝐵, 𝐶) has inaccuracies 𝒜  (resp. ℬ and 𝒞). Then 

2𝑝⋅𝒞 ≥ max(𝐴 ⊙ 2𝑝⋅ℬ, 2𝑝⋅𝒜 ⊙ 𝐵), 
for any 𝑝 > 1 , where power of 2  and max  are applied 

element-wise. 

Proof. This Theorem is simply a combination of 

Theorems 5.2 and 6.1. □ 

VIII. IMPLEMENTATION 

We provide an implementation of our approach (see 
https://github.com/netay/xnumpy and 

https://gitflic.ru/project/kryptodpi/xnumpy) by extending widely 

applied NumPy library (see [4]). There “black bits” are 

estimated, i. e. if bits or digits are shown as inexact by this 

library, then they are meaningless. 

One exception is precision computation for matrix 

product. If we compute matrix product, we rely on its 

numerical values provided by libraries like blas/cublas/mkl. 

At the same time, precision computation itself requires 

matrix multiplication. Due to performance reasons, these 

matrix multiplications are also computed by the same 

libraries, although in some cases it can give inexact matrix 

elements, and this can imply sometimes inexact precision 

estimations. But if we rely on some bit inexact numerical 

values, then we can rely on some bit inexact precision 

estimation in the same numerical computation. 

Actually, some minor inaccuracies for the condition 

number computation can also happen, but they are usually 

can be omitted. 

IX. CONCLUSIONS 

Here we consider well known issues related to 

computations with floating point numbers. These 

computations are standard, but they introduce numerical 

inaccuracies that can lead to loss of significance for all the 

computation. It may be crucial for computations with huge 

number of floating point operations and high rate of 

quantization like neural networks training. We provide 

algorithms and their implementations for automatic 

estimation of inaccuracies during computations. It can help 

to avoid making unreliable conclusions based on inaccurate 

computations. 

X. FUTURE WORK 

All these estimations hold independent upon platform, 

software and hardware details. The implementation is 

already available for CPU and will be extended for GPU. 

Also, more advanced algorithms such as linear algebra and 

statistic methods will be overloaded to support precision 

loss tracking automagically. 
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