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Bias in Text Generative Open AI 

Sai Asrith Devisetti 

Abstract: The rise of text generation models, especially those 

powered by advanced deep learning architectures like Open AI’s 

GPT-3, has unquestionably transformed various natural language 

processing applications. However, these models have recently faced 

examination due to their inherent biases, often evident in the 

generated text. This paper critically examines the issue of bias in 

text generation models, exploring the challenges posed, the ethical 

implications it entails, and the potential strategies to mitigate bias. 

Firstly, we go through the causes of the origin of the bias, ways to 

minimize it, and mathematical representation of Bias. 
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I. INTRODUCTION

Text-generative models have become most prominent in

our lives, and we sometimes have too much faith in the 

outcomes. However, the responses that a text-generative AI 

model gives aren’t neutral. 

A. What is Bias?

[2] Bias here refers to the Statistical Bias. Statistical Bias

describes the tendency of the generated output to be 

inappropriate or skewed from reality. The advanced use of 

artificial intelligent systems brings numerous problems and 

challenges for users. To ensure fair and reliable data, detecting 

and addressing bias is crucial, particularly in decision-making 

or machine learning. 

• Bias in Data: Bias in data arises from how populations

are sampled and defined, as well as how features or labels

are chosen or collected.

• Bias in Modeling: Bias might arise during model

iteration and evaluation. Also, there might be bias during

model construction where distinct populations are

inappropriately combined.

II. BACKGROUND & RELATED WORK

In recent years, the bias in Search Engines has come to light. 

Now, the text generative models are the most used and trusted 

platforms, so evaluating bias in them is essential. Bias is 

important because the returns must be balanced representation 

of all possible outcomes [9][10][11]. 

Below are some research papers that I have been through to 

understand the bias in Search Engines: 
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1. [5] Search Engine Bias and the Demise of Search Engine

Utopianism: This paper has the algorithms that search

engines use to make editorial choices. Also, how search

engine editorial choices create Biases. Along with the

ways to mitigate bias.

2. [7] Evaluation Metrics for Measuring Bias in Search

Engine Results: The Search engine decides what we see

for a given query. The keywords for the publication were

”Bias evaluation”, ”Fair ranking”, ”Search Bias”, and

”Web Bias”. This paper explains how to estimate bias

from unknown algorithms and deals with some

approximate algorithms used by search engines for

providing the output [8].

A. Bias in Data

[3] In continuation of the Bias in Data, bias can show up in

any form: 

• Historical Bias: Historical bias is already an existing

bias in the world that stepped into the data.

• Representation Bias: Representation bias arises from

the way data is collected and defined.

• Measurement Bias: Measurement bias occurs when the

features or labels used for training AI models are chosen

in a way that introduces bias [12].

B. Bias in Modelling

[3] In continuation of the Bias in Modelling, how perfect the

data might be, there are high chances for bias to show up while 

modelling: 

• Evaluation Bias: Evaluation bias occurs when the

evaluation metrics used to assess the performance of AI

models are biased or do not consider all relevant factors.

• Aggregation Bias: Aggregation bias refers to the bias

that can emerge when data is aggregated or summarized

at different levels.

Figure 1: Origin of Bias 

III. MECHANISMS FOR TEXT GENERATION IN AI

MODELS 

The data is stored in the main server and retrieved based on 

the user query. The following hierarchy is followed for 

generating the output: 
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• Crawling: Crawling is considered to be the first step in 

data exploration, the AI models traverse through the 

available data and store the required data in the local 

database, as per the user query. The model in this stage is 

trained to comprehend the diverse linguistic landscape 

• Indexing: The data stored in the local database, is 

structured and organized in the internal memory. In this 

stage, the model is trained to recognize patterns. 

• Ranking: The structured and organized data will be 

ranked based on the user requirement and the highest 

ranked data will be outputted. 

 

Figure 2: Hierarchy of Output Generation 

IV. STRATEGIES FOR MITIGATING BIAS 

Bias could be added from different stages in the mechanism 

used for text-generative AI models, we are not considering the 

Historical Bias as it is most common and could be prevented 

by some strategies, Representation bias arises in the crawling, 

Measurement bias arises in the Indexing, Evaluation bias in 

the Ranking, and Aggregation bias in the output. The total bias 

is the combination of the above deviations. 

Although Bias can be mitigated following some preventing 

measures: 

• Diverse Training Data: Incorporate diverse and 

representative training data that covers various 

demographic groups, cultures, and perspectives. This 

helps reduce bias originating from historical 

underrepresentation. 

• Data Preprocessing and Cleansing: Implement 

rigorous data preprocessing and cleansing techniques to 

identify and mitigate biased data within the training data. 

This can involve removing or neutralizing biased 

examples and entities. 

V. QUANTIFYING BIAS 

Statistical Bias in Estimation 

Statistical bias is a characteristic of a statistical technique or 

its outcomes where the expected value of the results differs 

from the true underlying quantitative parameter being 

estimated. Bias is defined as follows: Let T be a statistic used 

to estimate a parameter θ, and let E(T) denote the expected 

value of T. Then, 

bias(T,θ) = bias(T) = E(T) − θ 

is termed the bias of the statistic T concerning θ. If bias(T,θ) 

= 0, then T is considered an unbiased estimator of θ; otherwise, 

it is considered a biased estimator of θ. 

For Example, while calculating the system’s bias, T can be 

specific text generated by the AI model, and θ can be ideal or 

unbiased text. Thus, calculated bias represents how much the 

generated text differs on average, from the ideal, unbiased 

text. 

Through the process, we work on minimizing the bias by 

exploring various causes for bias. 

Although the algorithms for the output generation and 

feature selection are not transparent, there are approximate 

algorithm auditing technologies that provide an effective 

means for evaluating bias. For example, the bias in the content 

can be estimated using the Crowd Sourcing technique [6]. 

Let us consider S to be the set of crawling bots and Q be the 

set of queries. Let s ϵ S, and q ϵ Q, then bias at each level can 

be written as: 

βf(r) = fo(r) − fe(r) 

where f is a function that measures the likelihood of r in 

satisfying the information need of the user about the view 

Output(o) and the view Estimate (e),. We note that ideological 

bias is measured in the same way by transforming the stances 

of the documents into ideological leanings. Before defining f, 

from Eq. (1), we define the mean bias (MB) of a search engine 

s as: 

MB  

An unbiased model would produce a mean bias of 0. A 

limitation of MB is that if a generative model is biased towards 

the Output(o) view on one topic and bias towards the 

Estimate(e) view on another topic, these two contributions 

will cancel each other out. In order to avoid this limitation, we 

also define the mean absolute bias (MAB), which consists in 

taking the absolute value of the bias for each r. Formally, this 

is defined as follows: 

MAB  

VI. CONCLUSION AND FURTHER WORKS 

In this work we proposed a new representation of the total 

bias for the Generative AI model also we examined the origin 

of bias and precautions to prevent the Bias 

We did not go through the Bias Evaluation and Statistical 

analysis, i.e, what factors influence the bias most. This could 

be left for future progress [1][4]. 
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